At ValidExamDumps, we consistently monitor updates to the Juniper JN0-683 exam questions by Juniper. Whenever our team identifies changes in the exam questions,exam objectives, exam focus areas or in exam requirements, We immediately update our exam questions for both PDF and online practice exams. This commitment ensures our customers always have access to the most current and accurate questions. By preparing with these actual questions, our customers can successfully pass the Juniper Data Center Professional exam on their first attempt without needing additional materials or study guides.
Other certification materials providers often include outdated or removed questions by Juniper in their Juniper JN0-683 exam. These outdated questions lead to customers failing their Juniper Data Center Professional exam. In contrast, we ensure our questions bank includes only precise and up-to-date questions, guaranteeing their presence in your actual exam. Our main priority is your success in the Juniper JN0-683 exam, not profiting from selling obsolete exam questions in PDF or Online Practice Test.
Exhibit.
You are troubleshooting a DCI connection to another data center The BGP session to the provider is established, but the session to Border-Leaf-2 is not established. Referring to the exhibit, which configuration change should be made to solve the problem?
Understanding the Configuration:
The exhibit shows a BGP configuration on a Border-Leaf device. The BGP group UNDERLAY is used for the underlay network, OVERLAY for EVPN signaling, and PROVIDER for connecting to the provider network.
The OVERLAY group has the accept-remote-nexthop statement, which is designed to accept the next-hop address learned from the remote peer as is, without modifying it.
Problem Identification:
The BGP session to Border-Leaf-2 is not established. A common issue in EVPN-VXLAN environments is related to next-hop reachability, especially when accept-remote-nexthop is configured.
In typical EVPN-VXLAN setups, the next-hop address should be reachable within the overlay network. However, the accept-remote-nexthop can cause issues if the next-hop IP address is not directly reachable or conflicts with the expected behavior in the overlay.
Corrective Action:
Exhibit.
Given the configuration shown in the exhibit, why has the next hop remained the same for the EVPN routes advertised to the peer 203.0.113.2?
Understanding the Configuration:
The configuration shown in the exhibit involves an EVPN (Ethernet VPN) setup using BGP as the routing protocol. The export policy named CHANGE_NH is applied to the BGP group evpn-peer, which includes a rule to change the next hop for routes that match the policy.
Issue with Next Hop Not Changing:
The policy CHANGE_NH is correctly configured to change the next hop to 203.0.113.10 for the matching routes. However, the next hop remains unchanged when advertising EVPN routes to the peer 203.0.113.2.
Reason for the Issue:
In Junos OS, when exporting routes for VPNs (including EVPN), the next-hop change defined in a policy will not take effect unless the vpn-apply-export parameter is used in the BGP configuration. This parameter ensures that the export policy is applied specifically to VPN routes.
The vpn-apply-export parameter must be included to apply the next-hop change to EVPN routes.
Correct Answer Explanation:
D . The vpn-apply-export parameter must be applied to this peer: This is the correct solution because the next hop in EVPN routes won't be altered without this parameter in the BGP configuration. It instructs the BGP process to apply the export policy to the EVPN routes.
Data Center Reference:
This behavior is standard in EVPN deployments with Juniper Networks devices, where the export policies applied to VPN routes require explicit invocation using vpn-apply-export to take effect.
You are deploying an EVPN-VXLAN overlay. You must ensure that Layer 3 routing happens on the spine devices. In this scenario, which deployment architecture should you use?
Understanding EVPN-VXLAN Architectures:
EVPN-VXLAN overlays allow for scalable Layer 2 and Layer 3 services in modern data centers.
CRB (Centralized Routing and Bridging): In this architecture, the Layer 3 routing is centralized on spine devices, while the leaf devices focus on Layer 2 switching and VXLAN tunneling. This setup is optimal when the goal is to centralize routing for ease of management and to avoid complex routing at the leaf level.
ERB (Edge Routing and Bridging): This architecture places routing functions on the leaf devices, making it a distributed model where each leaf handles routing for its connected hosts.
Architecture Choice for Spine Routing:
Given the requirement to ensure Layer 3 routing happens on the spine devices, the CRB (Centralized Routing and Bridging) architecture is the correct choice. This configuration offloads routing tasks to the spine, centralizing control and potentially simplifying the overall design.
With CRB, the spine devices perform all routing between VXLAN segments. Leaf switches handle local switching and VXLAN encapsulation, but routing decisions are centralized at the spine level.
This model is particularly advantageous in scenarios where centralized management and routing control are desired, reducing the complexity and configuration burden on the leaf switches.
Data Center Reference:
The CRB architecture is commonly used in data centers where centralized control and simplified management are key design considerations. It allows the spines to act as the primary routing engines, ensuring that routing is handled in a consistent and scalable manner across the fabric.
You want to ensure that VXLAN traffic from the xe-0/0/12 interlace is being encapsulated by logical vlep.32770 and sent to a remote leaf device in this scenario, which command would you use to verify that traffic is flowing?
VXLAN Traffic Verification:
To ensure VXLAN traffic from the xe-0/0/12 interface is correctly encapsulated by the logical vtep.32770 and sent to a remote leaf device, it is essential to monitor the relevant interface statistics.
The command show interfaces terse vtep.32770 statistics provides a concise overview of the traffic statistics for the specific VTEP interface, which can help verify whether traffic is being correctly encapsulated and transmitted.
This command is particularly useful for quickly checking the traffic counters and identifying any potential issues with VXLAN encapsulation or transmission.
It allows you to confirm that traffic is flowing as expected, by checking the transmitted and received packet counters.
Data Center Reference:
Monitoring interface statistics is a crucial step in troubleshooting and validating network traffic, particularly in complex overlay environments like EVPN-VXLAN.
Which two statements are true about EVPN routes for Data Center Interconnect? (Choose two.)
Type 2 EVPN Routes:
Type 2 routes advertise MAC addresses within an EVPN instance and are used primarily for Layer 2 bridging. These routes do not require a VXLAN tunnel to the protocol next hop because they operate within the same Layer 2 domain.
Type 5 EVPN Routes:
Type 5 routes are used to advertise IP prefixes (Layer 3 routes) within EVPN. Similar to Type 2 routes, they do not require a VXLAN tunnel to the protocol next hop because they represent L3 routes, which are managed at the routing layer without the need for VXLAN encapsulation.
Conclusion:
Option B: Correct---Type 2 routes do not need a VXLAN tunnel to the next hop, as they are used for Layer 2.
Option D: Correct---Type 5 routes also do not need a VXLAN tunnel because they operate at Layer 3, handling IP prefixes.