Free Juniper JN0-480 Exam Actual Questions

The questions for JN0-480 were last updated On Apr 22, 2025

At ValidExamDumps, we consistently monitor updates to the Juniper JN0-480 exam questions by Juniper. Whenever our team identifies changes in the exam questions,exam objectives, exam focus areas or in exam requirements, We immediately update our exam questions for both PDF and online practice exams. This commitment ensures our customers always have access to the most current and accurate questions. By preparing with these actual questions, our customers can successfully pass the Juniper Data Center, Specialist exam on their first attempt without needing additional materials or study guides.

Other certification materials providers often include outdated or removed questions by Juniper in their Juniper JN0-480 exam. These outdated questions lead to customers failing their Juniper Data Center, Specialist exam. In contrast, we ensure our questions bank includes only precise and up-to-date questions, guaranteeing their presence in your actual exam. Our main priority is your success in the Juniper JN0-480 exam, not profiting from selling obsolete exam questions in PDF or Online Practice Test.

 

Question No. 1

Which three statements describe intent-based analytics? (Choose three.)

Show Answer Hide Answer
Correct Answer: B, C, D

Intent-based analytics (IBA) is a feature of Juniper Apstra that allows you to combine intent from the network design with current and historic data from devices to reason about the network at-large1. IBA has the following characteristics:

It is a real-time information processing pipeline. This means that IBA can ingest, process, and analyze large amounts of data from devices in real time, using agents and probes. Agents are software components that collect data from devices and send them to the Apstra server.Probes are user-defined queries that aggregate data across devices and generate advanced data that can be more easily reasoned about1.

It is used to establish network performance baselines. This means that IBA can use the advanced data to measure and monitor the network performance against the expected outcomes and service levels.IBA can also use the historic data to create baselines that represent the normal behavior and state of the network2.

It alerts the network operator when network performance moves away from the baseline. This means that IBA can detect and report any anomalies or deviations from the baseline or the intent in the network.IBA can also provide insights and recommendations for troubleshooting and resolving the issues2.

The following two statements are incorrect in this scenario:

It indicates when device operating versions require updating. This is not true, because IBA does not provide any information or guidance about the device operating versions or updates.IBA is focused on the network performance and compliance, not on the device maintenance or upgrade1.

It collects information from vendor websites. This is not true, because IBA does not collect any information from vendor websites or external sources.IBA only collects information from the devices in the network, using agents and probes1.


Intent-Based Analytics --- Apstra 3.3.0 documentation

What is Intent Based Networking? | Juniper Networks US

Question No. 2

You have recently committed a change after creating a new blueprint in Juniper Apstr

a. In the main dashboard, you see a number of anomalies related to BGR What is a likely cause of these anomalies?

Show Answer Hide Answer
Correct Answer: B

In Juniper Apstra, a blueprint is a logical representation of the network design and configuration. When you create a new blueprint, you need to commit the changes to apply them to the network devices. However, committing the changes does not mean that the network is immediately updated and operational. It may take some time for the network to converge and reflect the new state of the blueprint. During this time, you may see some anomalies related to BGP in the main dashboard, which indicate that the BGP sessions are not established or stable between the devices. These anomalies are usually temporary and will disappear once the network converges and the BGP sessions are up and running. Therefore, the statement B is the most likely cause of these anomalies in this scenario.

The following three statements are less likely causes of these anomalies in this scenario:

You have misconfigured ASNs. This is possible, but not very likely, because Juniper Apstra provides ASN pools that can be automatically assigned to the devices based on their roles. You can also manually specify the ASNs for the devices, but you need to ensure that they are unique and consistent with the network design. If you have misconfigured ASNs, you may see some anomalies related to BGP, but they will not disappear after the network converges. You will need to fix the ASNs and commit the changes again to resolve the anomalies.

Spine-leaf links are incorrectly set. This is possible, but not very likely, because Juniper Apstra provides connectivity templates that can be used to define the spine-leaf links based on the interface maps. You can also manually specify the spine-leaf links, but you need to ensure that they are correct and match the physical cabling. If you have incorrectly set the spine-leaf links, you may see some anomalies related to BGP, but they will not disappear after the network converges. You will need to fix the spine-leaf links and commit the changes again to resolve the anomalies.

A generic system has not been configured. This is not relevant, because a generic system is a device that is not managed by Juniper Apstra, but is connected to the network. A generic system does not affect the BGP sessions between the devices that are managed by Juniper Apstra. If you have a generic system in your network, you need to configure it manually and ensure that it is compatible with the network design. A generic system does not cause any anomalies related to BGP in the main dashboard.


Blueprint Summaries and Dashboard

BGP Session Flapping Probe

Probe: BGP Session Monitoring

Question No. 3

Exhibit.

Which two statements about ESI values are correct for the server connections to the fabric shown in the exhibit? (Choose two.)

Show Answer Hide Answer
Correct Answer: C, D

To answer this question, we need to understand the concept of ESI values in EVPN LAGs. An ESI is a 10-byte value that identifies an Ethernet segment, which is a set of links that connect a multihomed device (such as a server) to one or more PE devices (such as leaf switches) in an EVPN network. The same ESI value must be configured on all the PE devices that connect to the same Ethernet segment. This allows the PE devices to form an EVPN LAG, which supports active-active or active-standby multihoming for the device. The ESI value can be manually configured (type 0) or automatically derived from LACP (type 1) or other methods. In the exhibit, Server A is connected to two leaf switches (QFX 5210) using a LAG with LACP enabled. Server B is connected to three leaf switches (QFX 5120) using a LAG with LACP enabled. Based on this information, the following statements are correct about ESI values for the server connections to the fabric:

C) A valid ESI value for Server A is 0x00.10.10.10.10.10.10.10.10.10. This is true because this ESI value can be automatically derived from the LACP configuration on the QFX 5210 devices. The LACP system ID is usually based on the MAC address of the device, and the LACP administrative key is a 2-byte value that identifies the LAG. For example, if the MAC address of the QFX 5210 device is 00:10:10:10:10:10 and the LAG ID is 10, then the LACP system ID is 00:10:10:10:10:10 and the LACP administrative key is 00:0A. The ESI value is then derived by concatenating the LACP system ID and the LACP administrative key, resulting in 00:10:10:10:10:10:00:0A. This ESI value can be represented in hexadecimal notation as 0x00.10.10.10.10.10.00.0A, or padded with zeros as 0x00.10.10.10.10.10.00.0A.00.00. This ESI value must be configured on both QFX 5210 devices that connect to Server A.

D) A valid ESI value for Server B is 0x00.00.00.00.00.00.00.00.00.00. This is true because this ESI value is a reserved value that indicates a single-homed device. Server B is connected to three leaf switches (QFX 5120) using a LAG, but it is not multihomed to any of them. This means that Server B does not need an ESI value to form an EVPN LAG with any of the leaf switches. Instead, Server B can use the reserved ESI value of 0x00.00.00.00.00.00.00.00.00.00, which indicates that it is a single-homed device and does not participate in any EVPN LAG. This ESI value must be configured on all three QFX 5120 devices that connect to Server B. The following statements are incorrect about ESI values for the server connections to the fabric:

A) A valid ESI value for Server A is 0x00.00.00.00.00.00.00.00.00.00. This is false because this ESI value is a reserved value that indicates a single-homed device. Server A is connected to two leaf switches (QFX 5210) using a LAG with LACP enabled, which means that it is multihomed to both of them. This means that Server A needs an ESI value to form an EVPN LAG with the leaf switches. The ESI value must be unique and non-zero for each Ethernet segment, so the reserved ESI value of 0x00.00.00.00.00.00.00.00.00.00 is not valid for Server A.

B) A valid ESI value for Server B is 0x00.20.20.20.20.20.20.20.20.20. This is false because this ESI value is not derived from the LACP configuration on the QFX 5120 devices. Server B is connected to three leaf switches (QFX 5120) using a LAG with LACP enabled, but it is not multihomed to any of them. This means that Server B does not need an ESI value to form an EVPN LAG with any of the leaf switches. Instead, Server B can use the reserved ESI value of 0x00.00.00.00.00.00.00.00.00.00, which indicates that it is a single-homed device and does not participate in any EVPN LAG. The ESI value of 0x00.20.20.20.20.20.20.20.20.20 is not valid for Server B, and it may cause conflicts with other Ethernet segments that use the same ESI value.Reference:

Ethernet Segment Identifiers, ESI Types, and LACP in EVPN LAGs

Understanding Automatically Generated ESIs in EVPN Networks

Ethernet Segment in EVPN: All You Need to Know


Question No. 4

In Juniper Apstr

a. which statement is correct?

Show Answer Hide Answer
Correct Answer: B

VMware anomaly detection is a feature of Apstra that provides visibility and validation of the virtual network settings and the physical network settings in a VMware vSphere environment. To enable this feature, Apstra requires a connection to a vCenter server that manages the ESX/ESXi hosts and the VMs connected to the Apstra-managed leaf switches. The vCenter server must be configured under External Systems in the Apstra web interface, and the vCenter integration must be staged and committed in the blueprint. This allows Apstra to collect information about VMs, ESX/ESXi hosts, port groups, and VDS, and to flag any inconsistencies or mismatches that might affect VM connectivity. The other options are incorrect because:

VMware anomaly detection is not on by default. It must be enabled by configuring a vCenter server under External Systems and adding a virtual infra to the blueprint.

VMware anomaly detection does not require a VMware hypervisor with exports enabled. It only requires LLDP transmit to be enabled on the VMware distributed virtual switch to associate host interfaces with leaf interfaces.

VMware anomaly detection does not require an Apstra server running on VMware. It can run on any supported platform, such as Linux, Windows, or Docker.Reference:

VMware vCenter/vSphere Virtual Infra

Anomalies (Service)

A Better Experience: VMware + Juniper Apstra


Question No. 5

Exhibit.

In the EVPN-VXLAN data center fabric bridged overlay architecture shown in the exhibit, the servers are connected to Lead and Leat6 using the same virtual network identifier (VNI).

Which two statements are correct in this scenario? (Choose two.)

Show Answer Hide Answer
Correct Answer: C, D

In the EVPN-VXLAN data center fabric bridged overlay architecture shown in the exhibit, the servers are connected to Leaf1 and Leaf6 using the same virtual network identifier (VNI). This means that the servers belong to the same Layer 2 domain and can communicate with each other using VXLAN tunnels across the fabric. The underlay network provides the IP connectivity between the leaf and spine devices, and it uses EBGP as the routing protocol. Therefore, the following two statements are correct in this scenario:

Loopback IPv4 addresses must be advertised into the EBGP underlay from leaf and spine devices. This is because the loopback addresses are used as the source and destination IP addresses for the VXLAN tunnels, and they must be reachable by all the devices in the fabric. The loopback addresses are also used as the router IDs and the BGP peer addresses for the EBGP sessions.

The underlay EBGP peering's must be established between leaf and spine devices. This is because the EBGP sessions are used to exchange the underlay routing information and the EVPN routes for the overlay network. The EBGP sessions are established using the loopback addresses of the devices, and they follow a spine-and-leaf topology, where each leaf device peers with all the spine devices, and each spine device peers with all the leaf devices.

The following two statements are incorrect in this scenario:

The underlay must use IRB interfaces. This is not true, because the underlay network does not provide any Layer 3 gateway functionality for the overlay network. The IRB interfaces are used to provide inter-VXLAN routing within the fabric, which is not the case in the bridged overlay architecture. The IRB interfaces are used in the edge-routed bridging (ERB) or the centrally-routed bridging (CRB) architectures, which are different from the bridged overlay architecture.

The underlay must be provisioned with PIMv2. This is not true, because the underlay network does not use multicast for the VXLAN tunnels. The VXLAN tunnels are established using EVPN, which uses BGP to distribute the MAC and IP addresses of the end hosts and the VTEP information of the devices. EVPN eliminates the need for multicast in the underlay network, and it provides optimal forwarding and fast convergence for the overlay network.


Exploring EVPN-VXLAN Overlay Architectures -- Bridged Overlay

EVPN LAGs in EVPN-VXLAN Reference Architectures

EVPN-VXLAN Configuration Guide