An image classification system is being trained for classifying faces of humans. The distribution of the data is 70% ethnicity A and 30% for ethnicities B, C and D. Based ONLY on the above information, which of the following options BEST describes the situation of this image classification system?
SELECT ONE OPTION
A . This is an example of expert system bias.
Expert system bias refers to bias introduced by the rules or logic defined by experts in the system, not by the data distribution.
B . This is an example of sample bias.
Sample bias occurs when the training data is not representative of the overall population that the model will encounter in practice. In this case, the over-representation of ethnicity A (70%) compared to B, C, and D (30%) creates a sample bias, as the model may become biased towards better performance on ethnicity A.
C . This is an example of hyperparameter bias.
Hyperparameter bias relates to the settings and configurations used during the training process, not the data distribution itself.
D . This is an example of algorithmic bias.
Algorithmic bias refers to biases introduced by the algorithmic processes and decision-making rules, not directly by the distribution of training data.
Based on the provided information, option B (sample bias) best describes the situation because the training data is skewed towards ethnicity A, potentially leading to biased model performance.
Which ONE of the following characteristics is the least likely to cause safety related issues for an Al system?
SELECT ONE OPTION
The question asks which characteristic is least likely to cause safety-related issues for an AI system. Let's evaluate each option:
Non-determinism (A): Non-deterministic systems can produce different outcomes even with the same inputs, which can lead to unpredictable behavior and potential safety issues.
Robustness (B): Robustness refers to the ability of the system to handle errors, anomalies, and unexpected inputs gracefully. A robust system is less likely to cause safety issues because it can maintain functionality under varied conditions.
High complexity (C): High complexity in AI systems can lead to difficulties in understanding, predicting, and managing the system's behavior, which can cause safety-related issues.
Self-learning (D): Self-learning systems adapt based on new data, which can lead to unexpected changes in behavior. If not properly monitored and controlled, this can result in safety issues.
ISTQB CT-AI Syllabus Section 2.8 on Safety and AI discusses various factors affecting the safety of AI systems, emphasizing the importance of robustness in maintaining safe operation.
The activation value output for a neuron in a neural network is obtained by applying computation to the neuron.
Which ONE of the following options BEST describes the inputs used to compute the activation value?
SELECT ONE OPTION
In a neural network, the activation value of a neuron is determined by a combination of inputs from the previous layer, the weights of the connections, and the bias at the neuron level. Here's a detailed breakdown:
Inputs for Activation Value:
Activation Values of Neurons in the Previous Layer: These are the outputs from neurons in the preceding layer that serve as inputs to the current neuron.
Weights Assigned to the Connections: Each connection between neurons has an associated weight, which determines the strength and direction of the input signal.
Individual Bias at the Neuron Level: Each neuron has a bias value that adjusts the input sum, allowing the activation function to be shifted.
Calculation:
The activation value is computed by summing the weighted inputs from the previous layer and adding the bias.
Formula: z=(wiai)+bz = \sum (w_i \cdot a_i) + bz=(wiai)+b, where wiw_iwi are the weights, aia_iai are the activation values from the previous layer, and bbb is the bias.
The activation function (e.g., sigmoid, ReLU) is then applied to this sum to get the final activation value.
Why Option A is Correct:
Option A correctly identifies all components involved in computing the activation value: the individual bias, the activation values of the previous layer, and the weights of the connections.
Eliminating Other Options:
B . Activation values of neurons in the previous layer, and weights assigned to the connections between the neurons: This option misses the bias, which is crucial.
C . Individual bias at the neuron level, and weights assigned to the connections between the neurons: This option misses the activation values from the previous layer.
D . Individual bias at the neuron level, and activation values of neurons in the previous layer: This option misses the weights, which are essential.
ISTQB CT-AI Syllabus, Section 6.1, Neural Networks, discusses the components and functioning of neurons in a neural network.
'Neural Network Activation Functions' (ISTQB CT-AI Syllabus, Section 6.1.1).
Which ONE of the following tests is LEAST likely to be performed during the ML model testing phase?
SELECT ONE OPTION
The question asks which test is least likely to be performed during the ML model testing phase. Let's consider each option:
Testing the accuracy of the classification model (A): Accuracy testing is a fundamental part of the ML model testing phase. It ensures that the model correctly classifies the data as intended and meets the required performance metrics.
Testing the API of the service powered by the ML model (B): Testing the API is crucial, especially if the ML model is deployed as part of a service. This ensures that the service integrates well with other systems and that the API performs as expected.
Testing the speed of the training of the model (C): This is least likely to be part of the ML model testing phase. The speed of training is more relevant during the development phase when optimizing and tuning the model. During testing, the focus is more on the model's performance and behavior rather than how quickly it was trained.
Testing the speed of the prediction by the model (D): Testing the speed of prediction is important to ensure that the model meets performance requirements in a production environment, especially for real-time applications.
ISTQB CT-AI Syllabus Section 3.2 on ML Workflow and Section 5 on ML Functional Performance Metrics discuss the focus of testing during the model testing phase, which includes accuracy and prediction speed but not the training speed.
Which ONE of the following options is the MOST APPROPRIATE stage of the ML workflow to set model and algorithm hyperparameters?
SELECT ONE OPTION
Setting model and algorithm hyperparameters is an essential step in the machine learning workflow, primarily occurring during the tuning phase.
Evaluating the model (A): This stage involves assessing the model's performance using metrics and does not typically include the setting of hyperparameters.
Deploying the model (B): Deployment is the stage where the model is put into production and used in real-world applications. Hyperparameters should already be set before this stage.
Tuning the model (C): This is the correct stage where hyperparameters are set. Tuning involves adjusting the hyperparameters to optimize the model's performance.
Data testing (D): Data testing involves ensuring the quality and integrity of the data used for training and testing the model. It does not include setting hyperparameters.
Hence, the most appropriate stage of the ML workflow to set model and algorithm hyperparameters is C. Tuning the model.
ISTQB CT-AI Syllabus Section 3.2 on the ML Workflow outlines the different stages of the ML process, including the tuning phase where hyperparameters are set.
Sample Exam Questions document, Question #31 specifically addresses the stage in the ML workflow where hyperparameters are configured.