Free Google Professional-Data-Engineer Exam Actual Questions

The questions for Professional-Data-Engineer were last updated On Jan 25, 2025

Question No. 1

You have a data pipeline that writes data to Cloud Bigtable using well-designed row keys. You want to monitor your pipeline to determine when to increase the size of you Cloud Bigtable cluster. Which two actions can you take to accomplish this? Choose 2 answers.

Show Answer Hide Answer
Correct Answer: A, C

Question No. 2

What are two methods that can be used to denormalize tables in BigQuery?

Show Answer Hide Answer
Correct Answer: B

The conventional method of denormalizing data involves simply writing a fact, along with all its dimensions, into a flat table structure. For example, if you are dealing with sales transactions, you would write each individual fact to a record, along with the accompanying dimensions such as order and customer information.

The other method for denormalizing data takes advantage of BigQuery's native support for nested and repeated structures in JSON or Avro input data. Expressing records using nested and repeated structures can provide a more natural representation of the underlying data. In the case of the sales order, the outer part of a JSON structure would contain the order and customer information, and the inner part of the structure would contain the individual line items of the order, which would be represented as nested, repeated elements.


Question No. 3

A TensorFlow machine learning model on Compute Engine virtual machines (n2-standard -32) takes two days to complete framing. The model has custom TensorFlow operations that must run partially on a CPU You want to reduce the training time in a cost-effective manner. What should you do?

Show Answer Hide Answer
Correct Answer: C

Question No. 4

You operate a database that stores stock trades and an application that retrieves average stock price for a given company over an adjustable window of time. The data is stored in Cloud Bigtable where the datetime of the stock trade is the beginning of the row key. Your application has thousands of concurrent users, and you notice that performance is starting to degrade as more stocks are added. What should you do to improve the performance of your application?

Show Answer Hide Answer
Correct Answer: A

Question No. 5

You are architecting a data transformation solution for BigQuery. Your developers are proficient with SOL and want to use the ELT development technique. In addition, your developers need an intuitive coding environment and the ability to manage SQL as code. You need to identify a solution for your developers to build these pipelines. What should you do?

Show Answer Hide Answer
Correct Answer: C

To architect a data transformation solution for BigQuery that aligns with the ELT development technique and provides an intuitive coding environment for SQL-proficient developers, Dataform is an optimal choice. Here's why:

ELT Development Technique:

ELT (Extract, Load, Transform) is a process where data is first extracted and loaded into a data warehouse, and then transformed using SQL queries. This is different from ETL, where data is transformed before being loaded into the data warehouse.

BigQuery supports ELT, allowing developers to write SQL transformations directly in the data warehouse.

Dataform:

Dataform is a development environment designed specifically for data transformations in BigQuery and other SQL-based warehouses.

It provides tools for managing SQL as code, including version control and collaborative development.

Dataform integrates well with existing development workflows and supports scheduling and managing SQL-based data pipelines.

Intuitive Coding Environment:

Dataform offers an intuitive and user-friendly interface for writing and managing SQL queries.

It includes features like SQLX, a SQL dialect that extends standard SQL with features for modularity and reusability, which simplifies the development of complex transformation logic.

Managing SQL as Code:

Dataform supports version control systems like Git, enabling developers to manage their SQL transformations as code.

This allows for better collaboration, code reviews, and version tracking.


Dataform Documentation

BigQuery Documentation

Managing ELT Pipelines with Dataform