Free Databricks Databricks-Certified-Professional-Data-Engineer Exam Actual Questions

The questions for Databricks-Certified-Professional-Data-Engineer were last updated On Feb 19, 2025

At ValidExamDumps, we consistently monitor updates to the Databricks-Certified-Professional-Data-Engineer exam questions by Databricks. Whenever our team identifies changes in the exam questions,exam objectives, exam focus areas or in exam requirements, We immediately update our exam questions for both PDF and online practice exams. This commitment ensures our customers always have access to the most current and accurate questions. By preparing with these actual questions, our customers can successfully pass the Databricks Certified Data Engineer Professional exam on their first attempt without needing additional materials or study guides.

Other certification materials providers often include outdated or removed questions by Databricks in their Databricks-Certified-Professional-Data-Engineer exam. These outdated questions lead to customers failing their Databricks Certified Data Engineer Professional exam. In contrast, we ensure our questions bank includes only precise and up-to-date questions, guaranteeing their presence in your actual exam. Our main priority is your success in the Databricks-Certified-Professional-Data-Engineer exam, not profiting from selling obsolete exam questions in PDF or Online Practice Test.

 

Question No. 1

The following code has been migrated to a Databricks notebook from a legacy workload:

The code executes successfully and provides the logically correct results, however, it takes over 20 minutes to extract and load around 1 GB of data.

Which statement is a possible explanation for this behavior?

Show Answer Hide Answer
Question No. 2

Where in the Spark UI can one diagnose a performance problem induced by not leveraging predicate push-down?

Show Answer Hide Answer
Correct Answer: E

This is the correct answer because it is where in the Spark UI one can diagnose a performance problem induced by not leveraging predicate push-down. Predicate push-down is an optimization technique that allows filtering data at the source before loading it into memory or processing it further. This can improve performance and reduce I/O costs by avoiding reading unnecessary data. To leverage predicate push-down, one should use supported data sources and formats, such as Delta Lake, Parquet, or JDBC, and use filter expressions that can be pushed down to the source. To diagnose a performance problem induced by not leveraging predicate push-down, one can use the Spark UI to access the Query Detail screen, which shows information about a SQL query executed on a Spark cluster. The Query Detail screen includes the Physical Plan, which is the actual plan executed by Spark to perform the query. The Physical Plan shows the physical operators used by Spark, such as Scan, Filter, Project, or Aggregate, and their input and output statistics, such as rows and bytes. By interpreting the Physical Plan, one can see if the filter expressions are pushed down to the source or not, and how much data is read or processed by each operator. Verified Reference: [Databricks Certified Data Engineer Professional], under ''Spark Core'' section; Databricks Documentation, under ''Predicate pushdown'' section; Databricks Documentation, under ''Query detail page'' section.


Question No. 3

A Databricks job has been configured with 3 tasks, each of which is a Databricks notebook. Task A does not depend on other tasks. Tasks B and C run in parallel, with each having a serial dependency on task A.

If tasks A and B complete successfully but task C fails during a scheduled run, which statement describes the resulting state?

Show Answer Hide Answer
Correct Answer: A

The query uses the CREATE TABLE USING DELTA syntax to create a Delta Lake table from an existing Parquet file stored in DBFS. The query also uses the LOCATION keyword to specify the path to the Parquet file as /mnt/finance_eda_bucket/tx_sales.parquet. By using the LOCATION keyword, the query creates an external table, which is a table that is stored outside of the default warehouse directory and whose metadata is not managed by Databricks. An external table can be created from an existing directory in a cloud storage system, such as DBFS or S3, that contains data files in a supported format, such as Parquet or CSV.

The resulting state after running the second command is that an external table will be created in the storage container mounted to /mnt/finance_eda_bucket with the new name prod.sales_by_store. The command will not change any data or move any files in the storage container; it will only update the table reference in the metastore and create a new Delta transaction log for the renamed table. Verified Reference: [Databricks Certified Data Engineer Professional], under ''Delta Lake'' section; Databricks Documentation, under ''ALTER TABLE RENAME TO'' section; Databricks Documentation, under ''Create an external table'' section.


Question No. 4

The data engineering team maintains a table of aggregate statistics through batch nightly updates. This includes total sales for the previous day alongside totals and averages for a variety of time periods including the 7 previous days, year-to-date, and quarter-to-date. This table is named store_saies_summary and the schema is as follows:

The table daily_store_sales contains all the information needed to update store_sales_summary. The schema for this table is:

store_id INT, sales_date DATE, total_sales FLOAT

If daily_store_sales is implemented as a Type 1 table and the total_sales column might be adjusted after manual data auditing, which approach is the safest to generate accurate reports in the store_sales_summary table?

Show Answer Hide Answer
Correct Answer: E

The daily_store_sales table contains all the information needed to update store_sales_summary. The schema of the table is:

store_id INT, sales_date DATE, total_sales FLOAT

The daily_store_sales table is implemented as a Type 1 table, which means that old values are overwritten by new values and no history is maintained. The total_sales column might be adjusted after manual data auditing, which means that the data in the table may change over time.

The safest approach to generate accurate reports in the store_sales_summary table is to use Structured Streaming to subscribe to the change data feed for daily_store_sales and apply changes to the aggregates in the store_sales_summary table with each update. Structured Streaming is a scalable and fault-tolerant stream processing engine built on Spark SQL. Structured Streaming allows processing data streams as if they were tables or DataFrames, using familiar operations such as select, filter, groupBy, or join. Structured Streaming also supports output modes that specify how to write the results of a streaming query to a sink, such as append, update, or complete. Structured Streaming can handle both streaming and batch data sources in a unified manner.

The change data feed is a feature of Delta Lake that provides structured streaming sources that can subscribe to changes made to a Delta Lake table. The change data feed captures both data changes and schema changes as ordered events that can be processed by downstream applications or services. The change data feed can be configured with different options, such as starting from a specific version or timestamp, filtering by operation type or partition values, or excluding no-op changes.

By using Structured Streaming to subscribe to the change data feed for daily_store_sales, one can capture and process any changes made to the total_sales column due to manual data auditing. By applying these changes to the aggregates in the store_sales_summary table with each update, one can ensure that the reports are always consistent and accurate with the latest data. Verified Reference: [Databricks Certified Data Engineer Professional], under ''Spark Core'' section; Databricks Documentation, under ''Structured Streaming'' section; Databricks Documentation, under ''Delta Change Data Feed'' section.


Question No. 5

In order to prevent accidental commits to production data, a senior data engineer has instituted a policy that all development work will reference clones of Delta Lake tables. After testing both deep and shallow clone, development tables are created using shallow clone.

A few weeks after initial table creation, the cloned versions of several tables implemented as Type 1 Slowly Changing Dimension (SCD) stop working. The transaction logs for the source tables show that vacuum was run the day before.

Why are the cloned tables no longer working?

Show Answer Hide Answer
Correct Answer: C

In Delta Lake, a shallow clone creates a new table by copying the metadata of the source table without duplicating the data files. When the vacuum command is run on the source table, it removes old data files that are no longer needed to maintain the transactional log's integrity, potentially including files referenced by the shallow clone's metadata. If these files are purged, the shallow cloned tables will reference non-existent data files, causing them to stop working properly. This highlights the dependency of shallow clones on the source table's data files and the impact of data management operations like vacuum on these clones. Reference: Databricks documentation on Delta Lake, particularly the sections on cloning tables (shallow and deep cloning) and data retention with the vacuum command (https://docs.databricks.com/delta/index.html).