You are a small business wireless network consultant and provide WLAN services for various companies. You receive a call from one of your customers stating that their laptop computers suddenly started experiencing much slower data transfers while connected to the WLAN. This company is located in a multi-tenant office building and the WLAN was designed to support laptops, tablets and mobile phones. What could cause a sudden change in performance for the laptop computers?
A possible cause of a sudden change in performance for the laptop computers is thata new tenant in the building has set their AP to the same RF channel that your customer is using. This can create co-channel interference (CCI), which is a situation where two or more APs or devices use the same or overlapping channels in the same area. CCI can degrade the performance of WLANs by increasing contention, collisions, retransmissions, and latency. CCI can also reduce the effective range and throughput of WLANs by lowering the signal-to-noise ratio (SNR). To avoid or mitigate CCI, it is recommended to use non-overlapping channels, adjust transmit power levels, or implement channel management techniques such as dynamic frequency selection (DFS) or load balancing. The sky condition, antenna position, or Bluetooth headset are not likely to cause a sudden change in performance for the laptop computers.Reference:[CWNP Certified Wireless Network Administrator Official Study Guide: Exam CWNA-109], page 81; [CWNA: Certified Wireless Network Administrator Official Study Guide: Exam CWNA-109], page 71.
Which directional antenna types are commonly used by indoor Wi-Fi devices in a MIMO multiple spatial stream implementation?
You are reporting on the RF environment in your facility. The manager asks you to describe the noise floor noted in the report. Which of the following is the best explanation?
The RF energy that exists in the environment from intentional and unintentional RF radiators that forms the baseline above which the intentional signal of your WLAN must exist is the best explanation of the noise floor noted in the report. The noise floor is a term that describes the level of background noise or interference in a wireless channel or band. The noise floor is measured in dBm (decibel-milliwatts) and it represents the minimum signal strength that can be detected or received by a wireless device. The noise floor is influenced by various factors, such as the sensitivity of the receiver, the antenna gain, the cable loss, and the ambient RF environment. The ambient RF environment consists of intentional and unintentional RF radiators that emit RF energy in the wireless spectrum. Intentional RF radiators are devices that are designed to transmit RF signals for communication purposes, such as Wi-Fi access points, Bluetooth devices, microwave ovens, or cordless phones. Unintentional RF radiators are devices that are not designed to transmit RF signals but generate electromagnetic radiation as a by-product of their operation, such as USB 3 devices, PC power supplies, or fluorescent lights. The noise floor affects WLAN performance and quality because it determines the minimum signal-to-noise ratio (SNR) that is required for a successful wireless transmission. SNR is the difference between the signal strength of the desired signal and the noise floor of the channel. SNR is also measured in dB and it indicates how much the signal stands out from the noise. A higher SNR means a better signal quality and a lower bit error rate. A lower SNR means a worse signal quality and a higher bit error rate. Therefore, to achieve a reliable WLAN connection, the intentional signal of your WLAN must exist above the noise floor by a certain margin that depends on the data rate and modulation scheme used. The other options are not accurate or complete explanations of the noise floor noted in the report. The noise caused by elevators, microwave ovens, and video transmitters is not the noise floor but rather examples of interference sources that contribute to the noise floor. The extra energy radiated by access points and client devices beyond that intended for the signal is not the noise floor but rather an example of spurious emissions that cause interference to other devices or channels. The energy radiated by flooring materials that causes interference in the 2.4 GHz and 5 GHz bands is not the noise floor but rather an example of attenuation or reflection that reduces or changes the direction of the signal.Reference:CWNA-109 Study Guide, Chapter 5: Radio Frequency Signal and Antenna Concepts, page 139
You are installing an AP to be used by 27 laptops. All laptops will connect on the 5 GHz frequency band. A neighbor network uses channels 1 and 6. What channel should be used for this AP and why?
A 5 GHz channel should be used for this AP because channels 1 and 6 are 2.4 GHz channels and they have no impact on the decision. The 5 GHz frequency band offers more non-overlapping channels than the 2.4 GHz frequency band, which reduces interference and improves performance. The 5 GHz frequency band also supports higher data rates and wider channel bandwidths than the 2.4 GHz frequency band, which increases capacity and throughput. The 5 GHz frequency band also has less interference from other devices and sources than the 2.4 GHz frequency band, which enhances reliability and quality of service. Therefore, it is recommended to use the 5 GHz frequency band for WLANs whenever possible. Channels 1 and 6 are two of the three non-overlapping channels in the 2.4 GHz frequency band (the other one is channel 11). They are used by a neighbor network in this scenario, but they do not affect the channel selection for this AP because they operate in a different frequency band than the 5 GHz frequency band. Channel 6 is not always best to use; it depends on the interference and congestion level in the environment. Channel 1 is not best to use because it has a lower frequency than channel 6; frequency does not determine channel quality or performance. Channel 11 is not best to use because it is also a 2.4 GHz channel and it may interfere with channels 1 and 6.Reference:CWNA-109 Study Guide, Chapter 4: Antenna Systems and Radio Frequency (RF) Components, page 113
You are reconfiguring an AP to use the short guard interval. How long will the new guard interval duration be after the change?
The short guard interval is an optional feature of 802.11n and 802.11ac that reduces the time between OFDM symbols from 800 ns to 400 ns. This can increase the data rate by about 11%, but also requires more precise timing and synchronization between the transmitter and the receiver. The short guard interval is only used when both the AP and the client support it and agree to use it .Reference:[CWNA-109 Study Guide], Chapter 4: Radio Frequency Signal and Antenna Concepts, page 163; [CWNA-109 Study Guide], Chapter 4: Radio Frequency Signal and Antenna Concepts, page 157.