When Service A receives a message from Service Consumer A(1),the message is processed by Component A . This component first invokes Component B (2), which uses values from the message to query Database A in order to retrieve additional data. Component B then returns the additional data to Component A . Component A then invokes Component C (3), which interacts with the API of a legacy system to retrieve a new data value. Component C then returns the data value back to Component A . Next, Component A sends some of the data it has accumulated to Component D (4), which writes the data to a te>X file that is placed in a specific folder. Component D then waits until this file is imported into a different system via a regularly scheduled batch import. Upon completion of the import, Component D returns a success or failure code back to Component A . Component A finally sends a response to Service Consumer A (5) containing all of the data collected so far and Service Consumer A writes all of the data to Database B (6). Components A, B, C . and D belong to the Service A service architecture. Database A, the legacy system, and the file folders are shared resources within the IT enterprise.
Service A is an entity service with a service architecture that has grown over the past few years. As a result of a service inventory-wide redesign project, you are asked to revisit the Service A service architecture in order to separate the logic provided by Components B, C, and D into three different utility services without disrupting the behavior of Service A as it relates to Service Consumer A . What steps can be taken to fulfill these requirements?
Service Consumer A sends a message with a business document to Service A (1), which writes the business document to Database A (2). Service A then forwards the business document to Service B (3), which writes the business document to Database B (4). Service B then responds to Service A with a message containing a failure or success code (5) after which Service A responds to Service Consumer A with a message containing a failure or success code (6). Upon receiving the message, Service Consumer A updates a log table in Database B (7). The log entry is comprised of the entire business document. Database A is dedicated to the Service A service architecture and Database B is a shared database.
You are told that the database updates performed by Service A and Service B must be either both successful or they cannot happen at all. The database update performed by Service Consumer A must happen after it is given the outcome of the database updates performed by Service A and Service B . Given that Service Consumer A must also update Database B as part of this service composition architecture, how is it possible to fulfill these requirements?
Service A is a utility service that provides generic data access logic to a database that contains data that is periodically replicated from a shared database (1). Because the Standardized Service Contract principle was applied to the design of Service A, its service contract has been fully standardized. Service A is being accessed by three service consumers. Service Consumer A accesses a component that is part of the Service A implementation by invoking it directly (2). Service Consumer B invokes Service A by accessing its service contract (3). Service Consumer C directly accesses the replicated database that is part of the Service A implementation (4).
You've been told that the reason Service Consumers A and C bypass the published Service A service contract is because, for security reasons, they are not allowed to access a subset of the operations in the WSDL definition that expresses the service contract. How can the Service A architecture be changed to enforce these security restrictions while avoiding negative forms of coupling?
Service Consumer A sends a message with a business document to Service A (1), which writes the business document to Database A (2). Service A then forwards the business document to Service B (3), which writes the business document to Database B (4). Service B then responds to Service A with a message containing a failure or success code (5) after which Service A responds to Service Consumer A with a message containing a failure or success code (6). Upon receiving the message, Service Consumer A updates a log table in Database B (7). The log entry is comprised of the entire business document. Database A is dedicated to the Service A service architecture and Database B is a shared database.
There are two problems with this service composition architecture that you are asked to address: First, both Service Consumer A and Service B need to transform the business document data from an XML format to a proprietary Comma Separated Value (CSV) in order to write the data to Database B . This has led to redundant data format transformation logic that has been difficult to keep in synch when Database B changes. Secondly, Service A is an entity service that is being reused by several other service compositions. It has lately developed reliability problems that have caused the service to become unavailable for extended periods. What steps can be taken to solve these problems?
Service Consumer A sends a message to Service A . Before the message arrives with Service A, it is intercepted by Service Agent A (1). which checks the message for compliance to Policy A that is required by Service A . If the message fails compliance, Service Agent A will not allow it to proceed and will instead write the message contents to a log. If the message does comply to the policy, it continues to be transmitted toward Service A, but before it arrives it is intercepted by Service Agent B (2), which validates the security credentials in the message header. If the security credential validation fails, the message is rejected and a runtime exception is raised. If the security credentials are validated, the message is sent to Service A . Upon receiving the message, Service A retrieves a data value from a database and populates the message header with this data value (3) prior to forwarding the message to Service B . Before the message arrives at Service B . it is intercepted by Service Agent C (4) which checks the message for compliance with two policies: Policy B and Policy C . Policy B is identical to Policy A that was checked by Service Agent A . To check for compliance to Policy C . Service Agent C uses the data value added by Service A . If the message complies with both of the policies, it is forwarded to Service B (5), which stores the message contents in its own database.
You are told that Policy B and Policy C have changed. Also, in order to carry out the compliance check of Policy C, Service Agent C will now require a new data value from the Service B database. How can this service composition architecture be changed to fulfill these new requirements?