At ValidExamDumps, we consistently monitor updates to the Amazon-DEA-C01 exam questions by Amazon. Whenever our team identifies changes in the exam questions,exam objectives, exam focus areas or in exam requirements, We immediately update our exam questions for both PDF and online practice exams. This commitment ensures our customers always have access to the most current and accurate questions. By preparing with these actual questions, our customers can successfully pass the Amazon AWS Certified Data Engineer - Associate exam on their first attempt without needing additional materials or study guides.
Other certification materials providers often include outdated or removed questions by Amazon in their Amazon-DEA-C01 exam. These outdated questions lead to customers failing their Amazon AWS Certified Data Engineer - Associate exam. In contrast, we ensure our questions bank includes only precise and up-to-date questions, guaranteeing their presence in your actual exam. Our main priority is your success in the Amazon-DEA-C01 exam, not profiting from selling obsolete exam questions in PDF or Online Practice Test.
A company stores datasets in JSON format and .csv format in an Amazon S3 bucket. The company has Amazon RDS for Microsoft SQL Server databases, Amazon DynamoDB tables that are in provisioned capacity mode, and an Amazon Redshift cluster. A data engineering team must develop a solution that will give data scientists the ability to query all data sources by using syntax similar to SQL.
Which solution will meet these requirements with the LEAST operational overhead?
The best solution to meet the requirements of giving data scientists the ability to query all data sources by using syntax similar to SQL with the least operational overhead is to use AWS Glue to crawl the data sources, store metadata in the AWS Glue Data Catalog, use Amazon Athena to query the data, use SQL for structured data sources, and use PartiQL for data that is stored in JSON format.
Data Catalog and crawlers in AWS Glue
AWS Certified Data Engineer - Associate DEA-C01 Complete Study Guide
Amazon Redshift provisioned clusters
[Querying external data using Amazon Redshift Spectrum]
[Using stored procedures in Amazon Redshift]
[What is AWS Lambda?]
[PartiQL for Amazon Athena]
[Federated queries in Amazon Athena]
[Amazon Athena pricing]
[Top 10 performance tuning tips for Amazon Athena]
[AWS Glue ETL jobs]
[AWS Lake Formation jobs]
A data engineer needs to use Amazon Neptune to develop graph applications.
Which programming languages should the engineer use to develop the graph applications? (Select TWO.)
Amazon Neptune supports graph applications using Gremlin and SPARQL as query languages. Neptune is a fully managed graph database service that supports both property graph and RDF graph models.
Option A: Gremlin Gremlin is a query language for property graph databases, which is supported by Amazon Neptune. It allows the traversal and manipulation of graph data in the property graph model.
Option D: SPARQL SPARQL is a query language for querying RDF graph data in Neptune. It is used to query, manipulate, and retrieve information stored in RDF format.
Other options:
SQL (Option B) and ANSI SQL (Option C) are traditional relational database query languages and are not used for graph databases.
Spark SQL (Option E) is related to Apache Spark for big data processing, not for querying graph databases.
A data engineer must use AWS services to ingest a dataset into an Amazon S3 data lake. The data engineer profiles the dataset and discovers that the dataset contains personally identifiable information (PII). The data engineer must implement a solution to profile the dataset and obfuscate the PII.
Which solution will meet this requirement with the LEAST operational effort?
AWS Glue is a fully managed service that provides a serverless data integration platform for data preparation, data cataloging, and data loading. AWS Glue Studio is a graphical interface that allows you to easily author, run, and monitor AWS Glue ETL jobs. AWS Glue Data Quality is a feature that enables you to validate, cleanse, and enrich your data using predefined or custom rules. AWS Step Functions is a service that allows you to coordinate multiple AWS services into serverless workflows.
Using the Detect PII transform in AWS Glue Studio, you can automatically identify and label the PII in your dataset, such as names, addresses, phone numbers, email addresses, etc. You can then create a rule in AWS Glue Data Quality to obfuscate the PII, such as masking, hashing, or replacing the values with dummy data. You can also use other rules to validate and cleanse your data, such as checking for null values, duplicates, outliers, etc. You can then use an AWS Step Functions state machine to orchestrate a data pipeline to ingest the data into the S3 data lake. You can use AWS Glue DataBrew to visually explore and transform the data, AWS Glue crawlers to discover and catalog the data, and AWS Glue jobs to load the data into the S3 data lake.
This solution will meet the requirement with the least operational effort, as it leverages the serverless and managed capabilities of AWS Glue, AWS Glue Studio, AWS Glue Data Quality, and AWS Step Functions. You do not need to write any code to identify or obfuscate the PII, as you can use the built-in transforms and rules in AWS Glue Studio and AWS Glue Data Quality. You also do not need to provision or manage any servers or clusters, as AWS Glue and AWS Step Functions scale automatically based on the demand.
The other options are not as efficient as using the Detect PII transform in AWS Glue Studio, creating a rule in AWS Glue Data Quality, and using an AWS Step Functions state machine. Using an Amazon Kinesis Data Firehose delivery stream to process the dataset, creating an AWS Lambda transform function to identify the PII, using an AWS SDK to obfuscate the PII, and setting the S3 data lake as the target for the delivery stream will require more operational effort, as you will need to write and maintain code to identify and obfuscate the PII, as well as manage the Lambda function and its resources. Using the Detect PII transform in AWS Glue Studio to identify the PII, obfuscating the PII, and using an AWS Step Functions state machine to orchestrate a data pipeline to ingest the data into the S3 data lake will not be as effective as creating a rule in AWS Glue Data Quality to obfuscate the PII, as you will need to manually obfuscate the PII after identifying it, which can be error-prone and time-consuming. Ingesting the dataset into Amazon DynamoDB, creating an AWS Lambda function to identify and obfuscate the PII in the DynamoDB table and to transform the data, and using the same Lambda function to ingest the data into the S3 data lake will require more operational effort, as you will need to write and maintain code to identify and obfuscate the PII, as well as manage the Lambda function and its resources. You will also incur additional costs and complexity by using DynamoDB as an intermediate data store, which may not be necessary for your use case.Reference:
[AWS Step Functions]
[AWS Certified Data Engineer - Associate DEA-C01 Complete Study Guide], Chapter 6: Data Integration and Transformation, Section 6.1: AWS Glue
During a security review, a company identified a vulnerability in an AWS Glue job. The company discovered that credentials to access an Amazon Redshift cluster were hard coded in the job script.
A data engineer must remediate the security vulnerability in the AWS Glue job. The solution must securely store the credentials.
Which combination of steps should the data engineer take to meet these requirements? (Choose two.)
AWS Secrets Manager is a service that allows you to securely store and manage secrets, such as database credentials, API keys, passwords, etc. You can use Secrets Manager to encrypt, rotate, and audit your secrets, as well as to control access to them using fine-grained policies. AWS Glue is a fully managed service that provides a serverless data integration platform for data preparation, data cataloging, and data loading. AWS Glue jobs allow you to transform and load data from various sources into various targets, using either a graphical interface (AWS Glue Studio) or a code-based interface (AWS Glue console or AWS Glue API).
Storing the credentials in AWS Secrets Manager and granting the AWS Glue job 1AM role access to the stored credentials will meet the requirements, as it will remediate the security vulnerability in the AWS Glue job and securely store the credentials. By using AWS Secrets Manager, you can avoid hard coding the credentials in the job script, which is a bad practice that exposes the credentials to unauthorized access or leakage. Instead, you can store the credentials as a secret in Secrets Manager and reference the secret name or ARN in the job script. You can also use Secrets Manager to encrypt the credentials using AWS Key Management Service (AWS KMS), rotate the credentials automatically or on demand, and monitor the access to the credentials using AWS CloudTrail. By granting the AWS Glue job 1AM role access to the stored credentials, you can use the principle of least privilege to ensure that only the AWS Glue job can retrieve the credentials from Secrets Manager. You can also use resource-based or tag-based policies to further restrict the access to the credentials.
The other options are not as secure as storing the credentials in AWS Secrets Manager and granting the AWS Glue job 1AM role access to the stored credentials. Storing the credentials in the AWS Glue job parameters will not remediate the security vulnerability, as the job parameters are still visible in the AWS Glue console and API. Storing the credentials in a configuration file that is in an Amazon S3 bucket and accessing the credentials from the configuration file by using the AWS Glue job will not be as secure as using Secrets Manager, as the configuration file may not be encrypted or rotated, and the access to the file may not be audited or controlled.Reference:
A data engineer is building an automated extract, transform, and load (ETL) ingestion pipeline by using AWS Glue. The pipeline ingests compressed files that are in an Amazon S3 bucket. The ingestion pipeline must support incremental data processing.
Which AWS Glue feature should the data engineer use to meet this requirement?
Problem Analysis:
The pipeline processes compressed files in S3 and must support incremental data processing.
AWS Glue features must facilitate tracking progress to avoid reprocessing the same data.
Key Considerations:
Incremental data processing requires tracking which files or partitions have already been processed.
The solution must be automated and efficient for large-scale ETL jobs.
Solution Analysis:
Option A: Workflows
Workflows organize and orchestrate multiple Glue jobs but do not track progress for incremental data processing.
Option B: Triggers
Triggers initiate Glue jobs based on a schedule or events but do not track which data has been processed.
Option C: Job Bookmarks
Job bookmarks track the state of the data that has been processed, enabling incremental processing.
Automatically skip files or partitions that were previously processed in Glue jobs.
Option D: Classifiers
Classifiers determine the schema of incoming data but do not handle incremental processing.
Final Recommendation:
Job bookmarks are specifically designed to enable incremental data processing in AWS Glue ETL pipelines.